Journal of Petrochemical Universities
  Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Preparation of N⁃Containing Polymer Catalyst and Its Performance in Acetylene Hydrochlorination
Wenqiang Qiao, Xi Sun, Lianjie Wang, Jian Zhang, Yucai Qin, Lijuan Song
Abstract299)   HTML    PDF (1304KB)(119)      

A nitrogen?doped carbon catalyst was prepared by the calcination of the CN y precursor synthesized by the polymerization of paraformaldehyde,1,3,5?trimethylbenzene and p?phenylenediamine.This paper also investigated the effect of catalyst calcination temperature on the performance of acetylene hydrochlorination.The results indicate that CN y ?700?1 catalyst has the best reaction activity.It has an acetylene conversion of up to 89.8% under the optimized conditions of acetylene?to?hydrogen chloride volume ratio of 1.0∶1.1,reaction temperature of 280 ℃ and GHSV(C2H2) of 90 h-1.The catalyst characterization manifests that the activity of the catalyst is related to the specific surface area,pore volume,and pyrrole nitrogen content.The active site of the catalyst is the carbon atom bonding with the pyrrole nitrogen atom.Increasing the calcination temperature results in a larger specific surface area within a certain temperature range,and the pyridine nitrogen can also be converted to pyrrole nitrogen to a certain extent.The main cause of catalyst deactivation is carbon deposit.

2022, 35 (3): 30-35. DOI: 10.3969/j.issn.1006-396X.2022.03.005
Effects of Acetylacetone Ligand on Catalytic Performance of SnCl 2/AC in Acetylene Hydrochlorination
Wei Zhou, Jian Zhang, Wenqiang Qiao, Xi Sun, Yucai Qin, Lijuan Song
Abstract341)   HTML    PDF (1251KB)(69)      

Supported SnCl2 is a mercury?ree catalyst for acetylene hydrochlorination.5.0%Sn(acac)2Cl2/AC catalyst was prepared by introducing acetylacetone ligand to enhance the catalytic performance of SnCl2 in acetylene hydrochlorination.The results show that the acetylene conversion of 5.0%Sn(acac)2Cl2/AC catalyst is up to 96% under the conditions of acetylene?to?hydrogen chloride molar ratio of 1∶1.1,170 ℃ and GHSV(C2H2) of 90 h-1, which is higher than that of the 5.0%SnCl2/AC catalyst. The physical and chemical properties of the catalysts before and after the reaction also proved that the introduction of acetylacetone ligand can enhance the acetylene adsorption capacity of the SnCl2 catalyst and inhibit Sn loss during the reaction.Therefore,the activity and stability of the SnCl2 catalyst were effectively improved.

2022, 35 (2): 37-42. DOI: 10.3969/j.issn.1006-396X.2022.02.006